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Review Article 
Isotope Effects in Liquid Metals 

M. GINOZA and N. H. MARCH 
Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, 
Oxford OX7 3TG. England. 

(Receiced March 27, 1985) 

The areas treated in this article are: 

(i) The Haeffner effect; where the light isotope moves towards the anode in all cases so far 

(ii) Self diffusion and mutual diffusion. 
(iii) Shear viscosity of pure isotopes of Li6 and Li7. 

In the course of the discussion, the Haeffner effect is shown to be directly related to electrical 
resistivity at the level of the lowest order Born approximation. 

Models used for treating isotopic mass effects are then considered; limitations and use- 
fulness being assessed by comparison with experimental data on liquid metals. The marked 
contrast with low temperature isotope effects is finally commented on. 

investigated. 

1 INTRODUCTION 

Isotope effects are known to exist in liquid metals from a variety of experi- 
ments with light isotopes, and in particular with Li6 and Li’. Some striking, 
and surprising, regularities exist more generally, especially the effect 
discovered by Haeffner.’ Here, in an applied electric field, the light isotope 
in the isotopic liquid metal mixture is found, invariably, to move towards 
the anode. No known exceptions to this rule exist. The problem of electro- 
migration is closely related, but presumably the understanding of the 
Haeffner effect is an essential prerequisite to an understanding of this 
phenomenon. For a detailed review on electromigration, the article by 
Huntington’ may be consulted. 

The purpose of the present article is two-fold. First, in Sections 2-4 
below, the facts, and some basic phenomenology, are presented in turn for 
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16 M. GINOZA A N D  N. H. MARCH 

(i) the Haeffner effect, (ii) self and mutual diffusion and (iii) shear viscosity. 
Following this, Sections 5 and 6 are concerned with microscopic theory. In 
particular, in Section 5 the theory underlying the Haeffner effect is presented, 
in lowest order Born approximation, in a form in which it is directly related 
to electrical resistivity. From this theory, it clearly emerges, within the 
lowest order Born approximation, that the condition for the Haeffner 
effect places clear constraints on the electrical resistivities associated with 
different isotopes. But to explain the resulting inequality there is, as yet, 
no unambiguous and generally accepted mechanism. Therefore Section 6 
concerns itself with some models in which isotope effects are explicitly 
introduced. These start from the very simple problem of a single valence- 
electron atom in motion which then suggests a Hamiltonian with particular 
mass scaling properties whose consequences can be worked out. This is 
followed by a discussion of a model of Rezayi and Suh13 which, though 
devised particularly with solids in mind, may have interesting consequences 
for the liquid state. The relation of this model to collective modes in liquids, 
and in liquid metal isotopic mixtures, is briefly considered. 

In the final section, the limitations, and the usefulness of the various 
models is discussed in relation to the experimental facts. While there seems 
as yet, no microscopic theory which can embrace all the experimental facts, 
it emerges that electronic and atomic transport are inextricably linked 
in liquid metals. For situations where there are light isotopes present, it 
does seem that present evidence supports the existence of the liquid counter- 
part of the ‘local mode’ round an impurity in solid state language. However, 
this cannot be the explanation of the shear viscosity measurements. There- 
fore, finally, the dynamic interaction between ions in liquid metals is 
discussed, and some further experiments are proposed which may shed light 
on the fundamental problems remaining in this area. 

2 HAEFFNER EFFECT 

The fact that, when an electric field is applied to an isotopic liquid metal 
mixture, the light isotope diffuses towards the anode was discovered by 
Haeffner. Short reviews to which the reader is referred are those of Epstein: 
and of Faber.’ There appear to be no known exceptions to this rule, and 
therefore it seems clear that the answer should not depend on the fine detail 
of liquid metal theory. 

Though the Haeffner effect is our prime interest here, it is useful to regard 
this effect as a special case of the more general electromigration problem 
in liquid metal alloys. This is the effect found in a number of binary metal 
alloys, where the constituent ions drift in opposite directions under the 
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ISOTOPE EFFECTS IN LIQUID METALS 77 

influence of an applied dc electric field. This effect, known alternatively as 
electrotransport or electrodiffusion, has generally been explained in terms 
of a competitive transfer of momentum from the conduction electron 
current to the two species of ions in the alloy, as discussed, for example, by 
Landauer and  WOO.^ 

The force acting on each ion is assumed to be the sum of two components: 
i) a direct force due to the applied electric field itself, which tends to 

drive the ion towards the cathode, and 
ii) an ‘electron drag’ component arising from the scattering of conduc- 

tion electrons by the ion, which acts to pull the ions towards the anode; that 
is in the same direction as the electron current. The ionic species which 
experiences the greater electron drag will then presumably migrate towards 
the anode, while the other, in order not to build up density gradient, will 
migrate in the opposite direction. 

One should be cautious, as Stroud’ points out, because, so far, the 
attempts have been largely focussed on calculating a force rather than a 
current. The ionic current induced in the liquid binary alloys under dis- 
cussion depends on an ionic mobility as well as a driving force. If the local 
fluctuations in the drag force are not too large, it should be possible to 
obtain an ionic mass current by simply multiplying the average driving 
force by an average mobility. Stroud’s work,’ however, suggests that these 
fluctuations are substantial. They should therefore be taken into account in 
a quantitative theory of electromigration. 

To press the above points in the alloy, before specializing to the Haeffner 
effect, Stroud, in his work on the average driving force for electromigration 
in liquid metal alloys concludes that there is a correlation between the 
calculated driving force acting on a solute ion and its assumed hard sphere 
diameter. He says ‘in virtually every case it is found that the effective valence 
of the solute atom becomes more negative as the assumed hard-sphere 
diameter decreases, i.e. the smaller the atom, the more likely it is to migrate 
to the anode.’ 

However, he then goes on to point out that the correlation between the 
driving force and hard-sphere diameter reflects a sensitivity of the driving 
force to the structure factors, i.e. to the local environment of the solute ion. 
He notes, in particular, that the sensitivity to the local environment 
ultimately arises from quantum-mechanical interference between the electron 
wave scattered off the ion on which a force is being exerted and the wave 
scattered off a neighbouring ion. The recoil of the ion induced by this 
scattered wave gives rise to the electron drag force. Although such sensitivity 
to environment is to be expected, the reason for the direction of the correla- 
tion; i.e. large drag forces corresponding to small diameter, is difficult to 
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78 M. GINOZA A N D  N. H. MARCH 

pinpoint. He then observes that since this environment is likely to fluctuate 
in a liquid, this sensitivity suggests that the driving forces may also experience 
substantial local fluctuations, which are likely to correlate with local fluc- 
tuations in solute mobility. Such correlated fluctuations have long been 
thought necessary to account for electric field induced isotope separations, 
i.e. the Haeffner effect we are primarily concerned with here. 

So far, we do not have a theory of such sophistication. However, in a later 
section, we shall consider a treatment, due to Parrinello, Tosi and March,8 
in which the direction of ion flow is directly related, in the liquid metal 
isotopic mixture, to the 'partial resistivities' of the component isotopes. 

2.1 Thermotransport 

The process in which a concentration gradient is induced by a temperature 
gradient in solids, liquids or gases has been called thermotransport, thermo- 
migration, thermal diffusion or the Ludwig-Soret effect. The phenomenon, 
while well studied in many materials, as reviewed by Grew' and by 
Huntington, has been less extensively studied in liquid metals. 

In a typical experimental set-up, a liquid with atomic fraction xi of 
component 1 is contained in a vertical capillary several cm long. It is then 
subjected to a temperature gradient of 1-5C/mm for a time t 2- 12/20. 
D denoting the diffusion constant, so that a steady-state concentration profile 
is developed. For liquid metals, the customary practice is to express the 
results in terms of the net heat of transport Q*, which for dilute alloys is 
given by 

Evidently, Q* is then obtained directly from a plot of In x1 versus 1/T. 
It is worthy of note first that Gonzales and Oriani" have pointed out 

that a strong correlation exists between Q* in solid metal systems and the 
effective valence measured in electrotransport experiments. This is expected, 
according to the arguments of Gerl," if the electron contribution to Q* 
is dominant. The correlation is particularly good for dilute liquid metals, in 
which the component which migrates to the hot end in thermotransport is 
the one which goes to the anode in electrotransport. Particularly important 
in the present context is that it holds for the isotopes of Li, since the migration 
of 6Li to the hot end is consistent with the measured Haeffner effect, according 
to Ott and Lunden12 and to Verh0e~en . l~  

Even with the large positive temperature gradients that are generally used 
for these experiments, Rigney14 emphasizes that convection can develop 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ISOTOPE EFFECTS IN LIQUID METALS 19 

during thermotransport if the component that migrates to the hot end 
has a higher density than the other component. The work of Bhat and 
Swalin15 should also be referred to in this connection. 

3 DIFFUSION OF IONS IN LIQUID METALS 

From the outline of the Haeffner effect given above, we turn to the closely 
related subject of isotope effects in diffusion. Here, following the pioneering 
experiment of Ban et a l l 6  on the shear viscosity of pure isotopes Li6 and 
Li7, to be summarized in the following section, diffusion measurements have 
been ca,rried out, using nuclear magnetic resonance techniques, by Murday 
and Cotts17 and by Kruger et ~ 1 . ' ~  

It should be noted at this point that, of the two major methods presently 
available, namely nuclear magnetic resonance (NMR) and radioactive 
tracer methods, NMR alone can measure genuine self-diffusion, whereas the 
tracer technique evidently gives results characteristic of an isotopic mixture. 
Thus we shall begin with the NMR results, and their interpretation at a 
phenomenological level. Then we shall add a brief account of radioactive 
tracer measurements. 

3.1 NMR results 

Murday and Cotts' measured the liquid state self-diffusion coefficients 
of Li6 and Li7 in isotopically enriched Li6 and Li7 metal and in several 
isotopic alloys by the nuclear magnetic resonance spin echo, pulsed magnetic 
gradient technique. At the melting point of 180-5"C, they determined the 
self-diffusion coefficients as 

D$ = (6.8 k 0.7) x lo-' cm2/sec 

for Li6 in 99 % Li6 and 

DL = (5.8 -t 0.6) x cm2/sec 

for Li7 in 99.9% Li7. 
They note that the ratio of these measured values (1.18 f 0.07) is greater 

than the square root of the mass ratio (M7/M6)1 '2  = 1.08. 
Furthermore, the isotopic ratio of self-diffusion coefficients is observed 

to be less than the ratio of the mutual diffusion coefficients in almost pure 
Li6 and almost pure Li7, (D~,/D&,) = 1.35 and the viscosity ratio discussed 
further below: q7/q6 = 1.44. They observe that the dependence of D on 
isotopic alloy concentration appears to be relatively weak and linear in all 
but the very low concentrations. 
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80 M. GINOZA AND N.  H. MARCH 

We note here that empirically it is found’’ that diffusion and viscosity 
in liquid metals are correlated; and in particular that they obey a Stokes- 
Einstein type relationship 

D y  = const x T. 

One would then expect to find for liquid lithium, D6/D7 = y7/y6 = 1.08. 
However, the viscosities in 99.8 % pure Li6 and 99.99 % pure Li7 have been 
measured, as discussed in some detail in the following section, by Ban et ~ 1 . ’ ~  
and give the ratio 1.44 & 0.02 already quoted above. 

( a )  N M R  measurement of selfdiffusion The relation of self-diffusion to the 
echo height in the pulsed NMR spin echo technique is developed by Hahn,” 
Carr and Purcell’l and other ~ o r k e r s ~ ~ , ~ ~  for steady magnetic gradients 
and infinite media. 

Murday and Cotts employ the extension to pulsed gradients given by 
Stejskal and Tanner.24 To their formula, essentially enabling the spin echo 
magnitude to be converted to an estimate of the self-diffusion coefficient, 
Murday and CottsI7 point out that two additional corrections are needed 
before applying it to their Li measurements. The NMR technique requires 
penetration into the sample of radio frequency magnetic fields. Metallic 
Li has a skin depth of 1OOp at 7 MHz, the frequency at  which the experiment 
was carried out. The samples consisted of a powder of particles with 
diameter - 1501.1 or less. The Li particle diameters were of the order of the 
distances traversed by the atoms during a measurement of D so, as Murday 
and Cotts emphasize, a significant number of atoms collided with a boundary, 
restricting the diffusion. An extension of a theory by Neumann was used 
by Murday and Cotts.” 

A powder of Li particles has significant inhomogeneous local fields due to 
contributions by the electron magnetic susceptibility. These fields produce 
large background gradients which turn out to make a significant contribution 
in the formula of Stejskal and Tanner relating D to the spin echo magnitude. 
Murday and Cotts describe a procedure for averaging the background 
gradient experienced by a nucleus over all nuclei, which averaging must be 
made to characterize the signal. We must refer the reader to their paper for 
this averaging. 

(b)  Data and results Data on the self-diffusion of Li7 and Li6 is collected 
in Table 3.1, taken from the work of Murday and Cotts.I7 

Also in Figure 3.1, graphical data is presented to display the temperature 
dependence of self-diffusion of Li7 in 99.99% Li7 and Li6 in 99% Li6. 
NachtriebZ6 has discussed the temperature dependence of liquid metal 
diffusion coefficients. He found that tin, lead and indium self-diffusion 
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ISOTOPE EFFECTS IN LIQUID METALS 

TABLE 3.1 

Self-diffusion coefficients for Li6 and Li’ in various isotopic 
lithium alloys (after Murday and Cotts, 1971). 

Species Matrix D (with corrections) T T  

81 

Li7 

Li7 in alloy 

Li ’ 
Li6 in alloy 

Li6 

Li 

99.99% Li’ 
0.01 ”/, LP 

36% Li’ 
64% Li6 
4.4% Li7 

95.6 Li6 
36% Li’ 
64% Li6 

4.4% Li’ 
95.6% Lib 

0.7 Li’ 
99.3 ”/, Li6 

5.99 
5.99 
6.11 
6.06 
7.19 
7.41 
8.58 
6.20 
6.63 
5.91 

6.11 
6.25 
6.63 
6.62 
6.92 
7.00 
6.92 
7.26 
7.12 
6.69 
7.14 
8.18 
8.23 
9.55 

185 
188 
186 
185 
225 
223 
257 
187 
189 
185 

184 
185 
189 
184 
187 
185 
186 
187 
186 
185 
188 
219 
224 
257 

coefficients could be represented by either D versus T or In D versus 1/T 
plots. 

Murday and Cotts,I7 by assuming a linear temperature dependence 

D = D, + M(T - T,) (3.1) 

and making a least squares fit to the Li data find 

DL = (5.76 f 0.5) 

u7 = (0.036 f 0.003) lo-’ cm2/sec “C 

cm2/sec 

and 

D i  = (6.80 f 0.6) 

a6 = (0.036 k 0.003) 

cm2/sec 

cm2/sec “C. 
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(b) 

FIGURE 3. I Self-diffusion and mutual diffusion coefficients of enriched liquid Li isotopes 
as function of temperature. Filled circles are for the tracer method by Lowenberg and Lodding 
(1967) and open circles for the N M R  method by Murday and Cotts (1971). 
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ISOTOPE EFFECTS IN LIQUID METALS 83 

If, on the other hand, the least squares fit is to the Arrhenius relation 

D = Do exp( - Q / R  T),  

Do = (8.3 1.4) cm2/sec and Q = 2380 & 160 cal/mole for Li7; 
Do = (6.8 f 1.2) cm2/sec and Q = 2080 k 160 cal/mole for Li6. These 
fits predict 

DL = 5.8 x cm2/sec 

and 

(g):m = 0.034 x cm2/sec "C 

while for Li6 the values are 

D: = 6.8 x low5 cm2/sec 

and 

= 0.035 x cm2/sec "C. ($):m 
Murday and Cotts point out that the ratio of the isotopic diffusion 

coefficients 

Dz/DL = 1.18 f 0.07 

is better known than either D: or DL separately, since some systematic error 
can be eliminated by taking the ratio. 

3.2 

Measurements of mutual diffusion coefficients in isotopically enriched Li 
have also been carried out by Lowenberg and L ~ d d i n g . ~ '  Their data are 
also presented in Figure 3.1. Their results at the melting point are 

Discussion and comparison wi th  tracer measurements 

DL,,, = (7.8 & 0.2) x 

DL,,, = (5.75 f 0.3) x 

cm2/sec 

cm2/sec 

where D& and DL are the mutual diffusion coefficients in the limit of 
isotopically pure Li6 and Li7 respectively. In the limit of diminishing solute 
concentration, the mutual diffusion coefficient approaches the self-diffusion 
coefficient of the s o l ~ t e . ~ ~ ~ ~ ~  
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84 M. GINOZA AND N. H. MARCH 

Thus, the Lowenberg and Lodding data27 may be presented in terms of 
self-diffusion, since 

in matrix of Li7 DL, = D i  
and 

in matrix of Li6 DL, = DL. 
In a check on alloy concentration dependence, the self-diffusion coefficients 

of Li6 and Li7 have been measured as a function of composition using NMR, 
by Murday and Cotts, their results being reproduced in Figure 3.2. Their 
data in this figure show that the self-diffusion coefficients of Li6 and Li7 
are relatively insensitive to the isotopic concentrations. The self-diffusion 
of 5 % Li7 in 95 % Li6 gives a value of 

D, = (5.75 f 0.7) cmz/sec 

at the melting point. The Lowenberg-Lodding dataz7 give the much larger 
value of D,, = (7.65 k 0.15) x cm2/sec for 7 %  Li in 93% Li6. 
Unfavourable signal to noise ratio precluded any NMR measurement of 
Li6 tracer in Li7. 

The self-diffusion data of Figure 3.2 show that there is little difference 
between the self-diffusion coefficients of Li6 and Li7 atoms in a given 
isotopic alloy. These data and the Lowenberg-Lodding value of DL, are 
in agreement within this percentage range. However, the DL, data of 
Lowenberg and Lodding fall well outside this percentage range. 

Murday and Coots point out that there is a strong concentration depen- 
dence of self-diffusion for the solvent near both ends of the concentration 
range. This effect is more pronounced at the Li7-rich end than at the Li6-rich 
end of the concentration range. Examination of the data in Table 3.1 shows 

8.U r 1 

ln 
0 

X - 0 2.0 0 L---.A 
0 .1 . 2  . 3  .h .5 .6 .7 .8 .9 .10 

mole Fraction of L i 7  

FIGURE 3.2 
Filled circles are for Li7 and filled triangles for Li6. 

Self-diffusion coefficients of Li6 and Li7 in various isotopic Li alloys at 180.5"C. 
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ISOTOPE EFFECTS I N  LIQUID METALS 85 

that in these regions the scatter of measured values of D at a given concentra- 
tion is less than the difference between mean values of D for different 
concentrations. 

The concentration dependence is illustrated in the magnitude of the ratio 
( D z / D i )  as determined from 95.6% Li6 and 92.6% Li7 alloys. For these 
alloys, ( D i / D I )  = 1.07 in contrast to the value of the ratio in almost iso- 
topically pure alloys where (D:/Di) = 1.18. The fractional change in D, 
[D$'D; - 11, decreases by more than 50% for a change ofjust a few percent 
in isotope concentration. 

Kruger et al." independently made similar NMR measurements on Li6 
and Li7. Their data, in agreement with Murday and Cotts, demonstrate a 
smaller isotopic mass dependence in D than was suggested by the known 
large isotope effect in shear viscosity,16 to be discussed in some detail below. 
Murday and Cotts emphasize that their observed isotope effect is also 
smaller than that observed for mutual diffusion coefficients. 

4 SHEAR VISCOSITY 

In 1962, Ban et ~ 1 . ' ~  measured the shear viscosity of the separated isotopes 
of molten Li. This was done by observing the viscous damping of a torsion 
pendulum whose bob contained a hollow spherical cavity filled with the 
material under test. 

Their results may be summarized as follows: 

i) For both Li6 and Li7, the viscosity varies approximately as exp(B/T) 

ii) B has the value 458 K for Li6 and 631 K for Li7. 
iii) The viscosity of Li6 is 4.18 f 0.05 millipoise (mP) at its melting 

temperature T, say, of 180.4C, while that of Li7 is 6.00 & 0.05 mP at 
T, = 180.7C. 

iv) The ratio of the viscosity of Li7 to that of Li6 is 1.44 at the melting 
point, in contrast to the value of 1.08, the square root of the mass ratio, as 
predicted by simple theoretical arguments (see the discussion below). 

It is relevant here to note that the separated isotopes had the compositions 
recorded below. The Li6 sample contained 99.8 atomic % Li6, 0.2% Li7; 
the chemical impurities were Si 0.01 %, Na 0.02% and several others; each 
less than 0.01 %. The Li7 sample contained 0.01 % Li6, 99.9 % Li7; the 
chemical impurities being A1 0.01, Sr 0.02% and several others, each less 
than 0.01 %. 

Figure 4.1, reproduced from Ban et al., shows the measured viscosities 
of these separated isotopes as a function of temperature over the range 
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FIGURE 4.1 
Montgomery (1962). 

Viscosity of Li6 and Li' as function of temperature by Ban, Randall and 

180-3OOC. Figure 4.2 shows the same data, but now log,, q has been plotted 
versus 1/T. It can be seen that over the temperature range studied, q is well 
represented by the form exp(B/T) quoted in (i) above. Whereas the ratio 
of the viscosities at T, is 1.44, as quoted in (iv) above, the ratio decreases 
gradually with increasing temperature. At the highest temperature, 278C, at 
which measurements were performed, the ratio has reduced to 1.32. 

0.7 5 

- 
F 
v 

F 

g- 0.65 
0 

J 

0.55 

1.8 2.0 2.2 
1 0 % ~  ( O K )  

FIGURE 4.2 Plot of log 8 (mP) against I/Tfor Li6 and Li' by Ban, Randall and Montgomery 
( 1  962). 
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ISOTOPE EFFECTS IN LIQUID METALS 87 

For naturally occurring Li, with 92.4% Li7, 7.6% Li6, at the melting 
temperature T, = 180C, Andrade and Dobbs3' obtain the measured value 
6.02 mP. This may be compared with the (non-fundamentally based) linear 
interpolation between the pure isotopes of 5.86 mP quoted by Ban et a l l 6  

It is relevant here to mention the work of Bratby and Harris,31 who have 
made measurements of the shear viscosity of the liquid neon isotopes Ne" 
and NeZ2. They determined the viscosity from the logarithmic decrement of 
an oscillating disc immersed in the liquid, using the formula of Dash and 
Taylor.32 Their results are reproduced in Figure 4.3. Above 30 K, the ratio 
(qZ2  - qzo)/qz0 is 5 & 1%. This is in agreement with the q ~ A 4 " ~  relation 
given by Rowl i r~son~~  and by Brown and March.34 Below this temperature, 
the ratio increases to 9 f 1 % at 25.4 K. They conclude that these observed 
departures from the classical mass scaling behaviour could arise from 
quantum corrections. For liquid neon, such quantum effects are expected 
to be observable, as discussed by Bewilogua and G l a d ~ n . ~ '  Bratby and 
Harris3' conclude that while quantum effects seem to be the most plausible 
explanation of the departures observed below 30 K from the root mass 
scaling for the liquid neon isotopes, it is unlikely that the Li results of Ban 
et a l l 6  are capable of explanation in this fashion. 
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FIGURE 4.3 The shear viscosity, q, of the liquid isotopes NeZ0 and NeZ2 by Bratby and 
Harris (1972). 
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88 M. GINOZA AND N. H. MARCH 

5 MICROSCOPIC THEORY OF HAEFFNER EFFECT 

In this section we consider a liquid metal which is a mixture of two isotopes. 
The aim is to summarize the results of the theory of the Haeffner effect, the 
detail being set out in Appendix Al .  

The formulation of the theory due to Parrinello et aL8 leads to results 
which may be summarized as follows: 

a) The effective valency, z:, can be calculated in terms of the (concentra- 
tion dependent) resistivities of isotopes 1 and 2, denoted by p1 and p2 
respectively, from the following equation : 

b) The difference between ion mean-velocities is given by 

u ,  - u2 = BeE x clzT (5.2) 

c) Ion mean-velocities must satisfy the total ion-mass flow conservation 

cIM1til + c z M 2 u ,  = 0 or Y, = X,(Y, - ua) 

where 

From (a), (b) and (c), we get 

where the electric field E is in the positive direction of x-axis. 
Typically, a current of lo4 amps cm-' is employed for 2000 hours to 

establish an isotopic concentration gradient in pure liquid Hg and the 
difference between ionic drift velocities is about lo-* to lop9  cm sec-' 
required to separate the isotopes on the scale of 1 to 10 ~ m . ~  Therefore, in 
order that the theorj is acceptable quantitatively, it must satisfy 

(5.4) 
(i) If Ml < M,,  P1 ' P2 

cm sec-'. 1 0 - 8 - 9  (ii) I u l  - u21 - 
If the origin of the Haeffner effect is'to be understood by the 'simple 

electron-ion interaction' defined by Eq. (AlS), it must arise from quantum 
effects since E,(k)  = V2&) for isotopes and the classical ionic structure 
factors then cancel exactly in the difference p1 - pz . 
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ISOTOPE EFFECTS IN LIQUID METALS 89 

Let us calculate the quantum correction. From Eqs (A1.6) and (Al.lO), 
we obtain 

where 

We can now use the following equations: 

i )  x/(ex - 1) = 1 - ix + En"=, (- l)"-'(B,/(2n)!)x2", where B, is the 

ii) When we define 
Bernoulli number, namely, B ,  = i, B2 = m, 1 . , . . 

= j Y r n  d o  o"Sij(k, o), one can show that 

Then 

Equations (5.4), (5.5) and this equation show that the quantum correction 
is in the wrong direction to give the Haeffner effect.* 

The remaining possibilities as to the origin of the Haeffner effect may be 
summarized as follows: 

a) In the discussion above, we implicitly assume that K&) is independent 
of ionic mass. Otherwise, this mass-dependence might be the origin of the 
effect. This possibility is considered further in Section 6 below. 

b) The dynamical electron-ion interaction might be the origin of the 
effect. 

It will be useful to rewrite the expression for p1 - pz as a sum of the two 
parts as follows. From Eqs (A1.6) and (A1.lO) 

P1 - Pz  = A m  + A, ,  
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90 M. GINOZA AND N. H. MARCH 

where 

where 

S,& 0) = c,c,S,1(k 0) - c1c,S,,(k w )  

+ &CCZSZl(k, 0) - c,S,,(k 011 
As seen from the above expressions, A ,  is the effect of the mass-dependence 
of the electron-ion interaction while A ,  comes from the quantum correction 
already discussed above. A ,  will be discussed in Section 6 below. 

6 MODELS FOR IONIC MASS DEPENDENCE OF ELECTRON-ION 
INTERACTION 

In this section, we shall consider three models by way of illustration of the 
possible ionic mass dependence of the electron-ion interaction. 

6.1 Sorbello’s model of moving atom with single valence electron 

Before considering condensed phases, it is instructive to briefly consider, 
following Sorbel10,~~ a moving atom with a single valence electron. In 
order to describe the dynamics of this valence electron, Sorbello adopted 
the frozen core approximation. Then the following Schrodinger equations 
result, in terms of the atom centre-of-mass coordinate R and the electron 
relative coordinate r: 

and 
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ISOTOPE EFFECTS IN LIQUID METALS 91 

where M and m denote ionic and electronic masses respectively. Here V ( r )  
is evidently the potential energy of the electron in the field of the nucleus 
plus any core electrons. Since V ( r )  may be determined by the core-electron 
wave functions, it will depend on the electron mass. It should be noted here 
that, in this model, the original electron mass m is replaced by the reduced 
mass p everywhere in the expression for V(r) .  Below, all fixed nucleus 
quantities (i.e. limit M -+ a) are written with a tilde. For the limit M -, co 
Eq. (6. I) becomes 

The main results which then emerge from Sorbello’s work are: 

V ( r )  = v r -  - -( :): 
or in Fourier transform: 

V(k)  = (F)2p(: k )  

If we allow a pseudopotential which is energy dependent, i.e. V(r)  + U(r, E) ,  

then the corresponding Eqs to (6.2) and (6.3) above are: 

and 

U(k,  E )  = (:)20(: k ;  E )  . 

These are the main predictions from Sorbello’s model, in the context of 
the present study. 

6.2 

A general Hamiltonian for a simple liquid metal with two types of isotope 
may be written: 

where 

Extension of Sorbello’s model to simple liquid metal 

H = H e  + Hi + H,-i (6.4) 
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92 M. GINOZA AND N .  H. MARCH 

Here W(r) is a bare ion-ion interaction, while the electron-ion interaction 
coupling electron (He) motion and ion (Hi) motion can be expressed as 

He-i = 1 C vea(Iri - RY'II, (6.5) 
a j  i 

where Vea(r) is the interaction potential between an electron and an c i  type 
moving ion. 

Based on an analogy with Eq. (6.2), it is proposed to examine a model 
for Vea(r) corresponding to which is the electron-fixed ion interaction 
potential : 

(6.6a) vea(r) = ua- P(aa- r )  

or in Fourier transform, 

Vea(k) = u," P(a,k) (6.6b) 

In Eq. (6.6), a, is a parameter to take into account the effect of ionic motion 
on the electron-ion interaction (cf. Eq. (6.2), where a, = 1 + m/M,). 

Assuming, in the liquid metal phase, that 

ua = 1 + 5(m/Ma)K 

we have calculated the mass dependence of the Haeffner effect in 
Appendix Al. 

We must take into account the screening effect of electrons through the 
dielectric function ~ ( k ) ,  and write 

where Psc(k) = P ( k ) / ~ ( k ) .  Then we find the result: 

1 d P S c ( k )  I 1 a@))] Vzf(k) - V z i ( k )  = 2(a1 - a2)8"'(k) 1 + - [ (mk ~ ( k )  ak 

+ O(u, - a2)2 

Then we find for the quantity A ,  the result in the lowest order 

x (al - u 2 )  x (2ks)4 
m2 

6n3h3ne2 
A ,  = 

k 1 aPSc(k)  +---} k 1 &(k) 
{l + 2 Ps'(k) d k  2 E(k) ak  
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FIGURE 6.1 Screened pseudo-potentials. 

We see that the sign of A ,  is dependent on the details of Psc(k)  and ~ ( k ) ,  in 
particular, in the range near k = 1. We show the behaviour of PS'(k) for 
various kinds of metals and E(k) in Figures 6.1 and 6.2. We may conclude 
that there is the definite possibility of A ,  > 0 in most liquid metals shown 
in these figures. 
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94 M. GINOZA AND N. H. MARCH 

6.3 Model of Rezayi and Suhl 

Rezayi and Suhl proposed a model for a one-component solid, containing 
an impurity and calculated the escape rate of the impurity. In this model, the 
(light) impurity is characterized by its local mode, and this mode can 
experience instabilities which arise from non-linear, dynamical coupling 
between the local mode and its surroundings. Rezayi and Suhl assume 
that this instability means the escape of the impurity from its initial site. 

Here, we shall model the effective ion dynamics in a metal by the model 
of Rezayi and Suhl. In particular, in Appendix A2 we calculate (a) the 
dynamical structure factors and (b) the electrical resistivity of the ion com- 
ponent. Another characteristic of the model that then emerges is that the 
effect of the local mode on the electrical resistivity increases anomalously 
as the instability is approached. 

In the following section, we shall apply the model of Rezayi and Suhl to 
a solid Li isotopic mixture. However, by way of summary of the conclusions 
of the detailed treatment of Appendix A2, we conclude the present section 
with a brief discussion of Figure 6.3, which is related to the anomalous 
growth of S ( k )  = 1 S(kw) dw and the resistivity p in the model of Rezayi 
and Suhl. 

(a) Anomalous growth o f S ( k )  and p The solutions of Mathieu’s Eq. (A2.5) 
contain the two parameters a and q. Figure 6.3 shows the regions in the 
(a, q )  plane where the solutions are stable or unstable. The regions are 

1. am 5 

.5 

0 

- .  5 

- 1.0 

FIGURE 6.3 
and v = 1 lines, 0 < v < 1. 

Characteristic exponent v. In the first stable region bounded by q = 0, Y = 0 
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ISOTOPE EFFECTS IN LIQUID METALS 95 

bounded by the v-constant lines. The (a, q )  corresponding to our model lies 
on the straight line APB as they must satisfy a = w&/w," - 2q due to their 
definitions. 

The parameter q varies with respect to time t ,  though this variation was 
treated adiabatically in Mathieu's equation. Then the solution we have 
obtained occasionally experiences an instability as the point P(a, q )  
approaches the points A or B. 

On the other hand, the expressions (A2.7) and (A2.8) for S(k) and p tell 
us that S(k) and p increase anomalously as the point P approaches A or B. 

The conditions for these instabilities can be expressed approximately as 
follows: 

It should be noted that these conditions are the same as those of the local 
mode instabilities in the work of Rezayi and Suhl. Therefore while the local 
mode is becoming unstable, its effect on S(k)  and p increases anomalously. 

6.4 Experimental data of Dugdale et a/ .  on isotopes of solid Li 

Parrinello et al.,' as discussed in Section 5, have related the Haeffner effect, 
as already mentioned above, to the electrical resistivity of pure isotopes, say 
p1 and pz .  The only directly measured resistivity data which is known to 
us is on solid Li, where Dugdale et conclude oppositely (see, however, 
below). However, the tendency towards local phonon mode formation 
round a light isotope has implications for the interpretation. Such a model, 
in a form in which it might still have relevance when the long-range order is 
lost above the melting point, has been presented in Section 6.3 above. We 
now shall establish contact between Dugdale's results and the model 
represented in Section 6.3. 

Dugdale et al. studied experimentally the electrical resistivity of the solid 
lithium and reported that the resistivity of Li' is larger than that of Li6. 
Parrinello, Tosi and March' have been interested in this result as the 
opposite conclusion derived from the existence criterion of the Haeffner 
effect in their formulation of the theory for liquid lithium. 

Let us discuss this problem on the basis of the result in Section 6.3. We 
first consider the case in which Li6 and Li7 systems are pure, namely, they 
contain no impurity. Since all phonon states in Section 6.3 are expressed 
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96 M. GINOZA A N D  N .  H .  MARCH 

by &(x) = (l/JV)eik'" with the eigenvalue wk = Ck, and then ( k [ d k C )  = 
&kT when we specify the phonon states in terms of wave vector k instead of 
r = 1 ,2 , .  . . , N ,  the resistivity p becomes 

where the function P ( x )  is x2e-"/(1 - e-x)2. 

Since M 6 C z  = M 7 C :  and F(hC6k/kBT) < F(hC,k/kBT), the inequality, 
p7 > P6 is always satisfied. This cannot, however, explain the experiment, 
because Eq. (6.7) gives the difference p7 - P6 a strong temperature 
dependence and this is not in agreement with the experiment in which the 
difference in the resistivities of Li6 and Li7 is nearly constant as T becomes 
lower. 

In order to seek another explanation of the experimental result, we refer 
to the details of lithium samples37 used in their experiment: their resistivities 
are for lithium 6 (99.3 % Li6 and 0.7 % Li7) and lithium of natural isotopic 
composition (92.7% Li7 and 7.3% Li6). Note the large difference in the 
impurity composition! The natural lithium may have to be treated as an 
alloy. From Eqs (A1.8) and (Al.lO), the resistivity of this alloy is 

= P z  + "1CP1 - P21 ,  (6.8) 

where c1 = 0.073, cz = 0.927, p 1  and p2 are partial resistivities of Li6 and 
Li7 components, respectively. On the other hand, the lithium 6 sample may 
be treated as the pure system and then its resistivity is 

pk"' = P 6 ,  

where P 6  is approximated by Eq. (6.7). The partial resistivity pz in Eq. (6.8) 
may be approximated by Eq. (6.7) as well. Now, from the discussion in the 
last paragraph we get 

p?' - p;' 2 cl(pl - pz) 

E 0.15 cm (6.9) 

It is interesting that the experimental result of Dugdale et 
pp > p? seems to imply that 

namely 

P1 > Pz (6.10) 

in terms of the partial resistivity p1 and pz of natural lithium. This inequality 
is just the same as that of the existence criterion of the Haeffner effect in the 
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ISOTOPE EFFECTS IN LIQUID METALS 91 

formulation by Parrinello, Tosi and March.H It may be interesting that 
with the use of Eqs (6.9) and (5.1) we estimate the magnitude of the effective 
valences of Li6 and Li7 in the natural solid lithium. From c1 = 0.073, 
c2 = 0.927 and clpl + c z p 2  = p:"', we get from the data by Dugdale 
et a1.37 

2.1 >, ~~ p1 - p2 2 0.2 
(80°K) c i Y l  + c 2 P 2  (320°K) 

(80°K) (320°K) 
-1.9 5 ZY 5 -0.2 , 

0.2 2 2; 2 0.0 
(80°K) (320°K) 

It is possible to interpret Eq. (6.10) on the basis of the model of Section 6.3. 
Li6 (Li7) in the natural lithium may be modelled by the local phonon modes 
(the Debye phonon modes or the band phonon modes). As discussed in 
Section 6.3, the effect of the local modes (unlike the other kind of modes) 
to the electrical resistivity can, under some circumstances, increase 
anomalously. This may explain Eq. (6.10). 

From Eqs (A1.4) and (Al.10) we find in the notation of  Appendix A1 

l f i l  - P z  
lf l l  P1 

This suggests that the anomalous growth in the resistivity may be accom- 
panied by the anomalous growth of the electron drag force felt by the Li6 
in the local modes, according to Newton's Third Law. Li6 then would be 
forced to move towards the anode. On the other hand, vacancies are left 
behind in this process of migration. Though the effective force acting on 
Li7 is relatively weak, it would force Li' to move towards the cathode with 
the help of the vacancy mechanism in such a way that the migrations of 
Li6 and Li7 satisfy the total mass flow conservation law, Eq. (A1.13). 

The discussion above may also be relevant in natural liquid lithium 
though, of course, the language of vacancies has to be modified, perhaps 
along lines proposed by Eyring. 

7 DISCUSSION AND SUMMARY 

That a lot remains to be done quantitatively on isotope effects in liquid 
metals is quite clear. While some of the ideas by which mass effects resem- 
bling those observed are by now laid down, it is still true that nowhere is 
the theory to date in better than semiquantitative agreement with experiment. 
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98 M. GINOZA AND N. H. MARCH 

It remains to study, in more detail, the effects of indirect dynamic ion-ion 
interactions. A start on this area has been made by McCaskill and March3' 
and by March and Suh13' but clearly this is worth further exploration. 

More measurements on light isotopes of liquid metals would be highly 
desirable; e.g. Be isotopes, but the toxicity of this material no doubt con- 
stitutes a major obstacle to progress. 

The question of local modes round a light impurity, well treated in a 
crystalline solid, when the long-range order of the host material is lost is 
plainly an area on which further work, both experimental and theoretical, 
should be of value. 
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Appendix A1 
resistivity of liquid metals 

Relation of Haeffner effect to the electrical 

An external, static electric field E = (E ,  0,O) is applied to the liquid metal 
in the positive direction of the x-axis and a steady current of electrons is 
established. The system may be described by the Hamiltonian : 

(Al . l )  

where %is the effective Hamiltonian of the two kinds of ion-components, and 
He is the effective Hamiltonian of the electron component. The most general 
expression of Hei may be written 

x 1 (P’ I U e a ( k  W )  I ~ ) ~ : ( k ) a i , a a p u  
a = 1 , 2  

where a& and up“ are creation and annihilation operators of a pa-electron 
respectively: 

Nu 

p,(k) = 1 exp( - ik - RY’), 
RY’ being the position vector of the ith ion of the a-ion component. 
(p’ I U,,(k, o) I p) denotes the interaction matrix element corresponding to 

i =  1 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



I00 M .  GINOZA A N D  N .  H. MARCH 

the electron-cc type ion interaction. The remaining factors mean energy- 
momentum conservation in the process of interaction. We may assume that 
Se describes the assembly of effectively free electrons and then 

where fl  = l /k ,T ,  cp = p2/2m, z is the electronic relaxation time and p 
is the chemical potential. 

The ‘electron-wind’ force, fa, acting on the cc-ion component may be 
calculated as the average of the force operator c2 [ - V$,!Hei]/Na. The 
method has similarities to that of Rousseau et ul.40,41,42 In the case of weak 
electron-ion interaction, however, we can get the same expression for fa 
directly from the work of Baym. In Born approximation for the treatment 
of electron inelastic scattering, the rate at which momentum hk transfers 
from the electrons to the a-ion component is 

x c (P’I U,Ak w)lP)(Pl U,,(-k, -w>IP’){N,IN,}”2S,,(k, w )  
s 

x [f(p + zeE)(l -f(p’ + zeE) 

- exp( -Bhw)f(p‘ + zeE)(l - f (p + zeE))] (A1.2) 

where 

Spa(k, 0) = S $ exp(iwt)(pp(k, t ) p i ( k ) ) / { ~ p ~ a 1 1 / 2 ,  

p(k, t )  and (. . .) meaning the Heisenberg representation and ensemble 
average with respect to &., respectively. The expression for fa is then given by 

f, = 1 hkW,(k). (A1.3) 
k 

In the case of a weak electric field, the force f, is proportional to reE. 
Let us define a quantity T ,  by 

(A 1.4) 

From Eqs (A1.2), (A1.3) and (A1.4) 
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ISOTOPE EFFECTS I N  LIQUID METALS 101 

In the case of the ‘simple interaction,’ namely 

(A1.5) 

(A1.6) 

In the limit of the one-component ion liquid, this expression reduces to 
that for the relaxation time given in the work of Baym. 

The total force acting on the or-type ion is the sum of the direct term z,eE 
and the ‘electron drag’ term f,. The resultant force is conveniently expressed 
as z:eE, zf being termed an ‘effective valency’: 

Now the force-balance equation in the electron component is 

and by making use of Eq. (A1.4) we find 

(A1.7) 

(A1.8) 

In fact, the unknown quantity z can be taken to be defined by this equation. 
From Eqs (A1.7) and (A1.8) we obtain 

(A1.9) 

where a ‘partial electrical resistivity’ pa is defined by 

171 2 ,  

ne2 z, 
pa = --. (A 1.10) 

It should be noted that 

xc,z: = 0, (Al .  11) 

which is another expression of the force balance equation in the electron 
component. From Eqs (A1.9) and (Al.11) we get Eq. (5.1). 

a 
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102 M. GINOZA AND N. H. MARCH 

The responses of the ion-components in the system under consideration 
defined by Eq. ( A l . l )  may be approximately treated in such a way that this 
system has applied to it a ‘fictitious’ external electric field z,XeE. Let us 
then consider a system defined by the following Hamiltonian : 

HPff = Hi + H’ (A 1 .1  2) 

where Hi = [ ~ t & = ~  and 

H = -  C N p z);eEx, 7 

p = 1 , 2  

E and xp being, respectively, the x-component of E and I y L  lRj@)/ND. 
There exist the following force-balance equations : 

N o  
- C I VRy,Hi = 0 

- 1 

(internal force balance) 
p j = 1  

N o  

VR(~)H’  = ( N ,  + N 2 )  1 c,z;eE 
p j = 1  ’ B 

= 0 (external force balance Eq.) (Al.11)). 

We now introduce a mean ion-velocity u, as 

v, = Tr G i i a  

where Gi is the statistical density matrix corresponding to Eq. (A1.12) 
and i, = dx,/dt. From the above force balance equations and the theorem 
of Ehrenfest, we obtain the total mass-flow conservation law (= total 
momentum conservation law) as 

1 C B M P U P  = 0. (A1.13) 
P 

This is Eq. (5.3). 
Now we may assume that H’ is sufficiently weak and is introduced 

adiabatically in the remote past. By linear response theory we can obtain 
straightforwardly 

where 
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ISOTOPE EFFECTS IN LIQUID METALS 103 

From Eqs (Al.l3), (A1.14) and 

Im X“.p(k, w )  = -(n/h” - exP(-pho)l(n,ng)l’zCSag(k, O ) I E = O ,  

u1 - u2 = Bc,z:eE 

where 

Appendix A2 Dynamical structure factor and resistivity 
for the model of Rezayi and Suhl 

We consider a system consisting of N - 1 host atoms with atomic mass M o  
and an impurity located at the origin. The dynamics of the system may be 
described by Q,(x, t )  which is a displacement vector of the atom having its 
equilibrium position at x. Rezayi and Suhl gave the model Lagrangian 
governing the motion of Q, in the continuum limit. This model is charac- 
terized by the coupling of the impurity with its nearest neighbours with a 
harmonic force (coupling constant E )  plus an anharmonic term (coupling 
constant b). Let us denote the orthogonal complete set of frequency eigen- 
functions of the harmonic field (b = 0) of this model by 

Qrl(x, t )  = eIq5,(x) exp(iwrt), 1 = 1, 2, 3 and r = 1, 2, . . . , N ,  

where or is the eigenfrequency and el the unit vector of the I-coordinate 
axis. The eigenfunctions 4, can be classified into two groups: the impurity- 
disturbed states ( r  = 1,2, . . . , M )  and the impurity-unperturbed states 
(Y = M + 1,. . . , N ) .  In the case when E > 0 the former consists of the 
impurity-perturbed band-states (r  = 1,2 , .  . . , M - 1) and the localized state 
( r  = M )  localized around the impurity. In what follows we will treat only 
this case. 

Let us define the canonical dynamical variable set ( q r l ,  p,[) by 
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I04 M. GINOZA AND N. H. MARCH 

where p is the mass density and n(x, t )  the canonical momentum conjugate 
to @(x, t). The Hamiltonian of Rezayi and Suhl is given by 

where B = b / p ~ . ~  
One now defines the function 

qrf( t )  being the Heisenberg representation of qr I ,  and if this quantity can be 
calculated then one can obtain the dynamical structure factor, S(k ,  o), 
from the relation 

where @(u) = 1 for r 2 0 and O(r) = 0 for r < 0. 
For r > M ,  the effect of the anharmonic coupling vanishes. For r I M ,  

the anharmonic term in the equation of motion is treated by an approxima- 
tion equivalent to that of Rezayi and Suhl: 

i) For r I M - 1, we neglect the anharmonic term. 
ii) For r = M 

C q r l l ( t )  1 1 q r 2 I Z ( t )  .i. 3 q r i t )  qiUl(t) 
r , S M  I ,  ( r Z < M  ( r S M - l  

= 3Cdt)  + s(t> cos 2%tlq,l(t) 
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ISOTOPE EFFECTS IN LIQUID METALS 105 

where wb = 0.84 wD (Debye frequency) and g ( t )  is the slowly time-varying 
part of ( ~ r s m - l  qrf(t))2,  which is treated as constant in the equation of 
motion. Then one obtains 

f,f,r.f.(t) = 6ff,6rr. - sin art for r # M : 6u,brr. f ( t )  for r = M (A2.4) 1 .  
wr 

and under the transformation 

d2y(x) + (a - 2q cos 2x)y(x)  = 0 (Mathieu's equation) (A2.5) 
dx2 

with initial conditions 

y(0) = 0 and 91 = 1. 
dx x = o  

Hence 

. f ' ( t)  = w, l sev(wb t)/se:(0), 

where seL(0) = d/dx se,(x) I x = o ,  and the characteristic exponent v is deter- 
mined by 

cev(n) = cev(0) cos nv. 

The functions sev(x) and ce,(x) are defined by 

ce,(x) = CFv(x) + F,( -x)1/2 

and 

se,(x) = [ F , ( x )  - Fv( - x ) ] / 2 i  

F , (x )  being the Bloch-type solution of the equation of Mathieu. For small 
q corresponding to the physical situation we want to consider 

1 1 
sin((v - 2)wb t )  - ___ 

+ 4(v + 1) 

(A2.6) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



106 M. GINOZA A N D  N.  H. MARCH 

Equations (A2.2)-(A2.6) lead to the dynamical structure factor S(k, w) 
as 1/N I ( p ( k ) )  l 2  6(w) + xy= Sr(k, o), where 

and from this result it follows that the static structure factor S(k) is given by 

(A2.7) 
N 1 

dm S(k, W )  = I ( ~ ( k ) )  1’ + 1 Sr(k) 
r =  I 

where 

and 

4 coth(A~,~p/2)  + ~ ‘ COth(hwb(V - 2)fl/2) - ~ 

4(v + 1) 4(v - 1) 

1 X COth(hWb(V + 2)fl/2 

Finally, following the approach of Baym, we can calculate the electronic 
resistivity associated with the present model as 

(A2.8) 
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ISOTOPE EFFECTS IN LIQUID METALS 

where Uei is the interaction between electron and ion, 

107 

These results, for S(k, o) and p, are consequences of course of the simple 
model of Rezayi and Suhl. They do not seem to have been recorded hitherto. 

Appendix A3 Application of isotopic mass scaling to 
transport properties 

In order to test the quantitative consequences of the model defined by 
Eqs (6.4), (6.5) and (6.6), we consider in this Appendix a simple liquid 
metal with one ion-component. From Eq. (6.4) the Hamiltonian of the 
system is 

where 
V(r)  = a- q r a -  I), (A3.2) 

P(v) denoting the electron-fixed ion interaction potential. M is as usual the 
ion mass while W(r) denotes the ion-ion interaction potential. At the 
densities appropriate to simple liquid metals, W(r) is reasonably replaced 
by a Coulombic potential 

(A3.3) 

P.C.L.-B 
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I OX M. GINOZA AND N. H. MARCH 

In Eq. (A3.1), the ions are being treated classically, a good approximation 
above the melting point of metals. 

Let us regard this Hamiltonian as a function of the dynamical variable 
sets p ,  r ,  P, R and parameters M ,  m and a. We express it formally as 
H(p, r ,  P, R ;  M ,  m, a). We can easily show from Eqs (A3.1)-(A3.3) that this 
function has the following scaling property: 

H(p, r ,  P, R ;  M ,  m, a )  = a-'H(pa, ra- ' ,  Pa, R a - ' ;  Ma ,  ma, 1). (A3.4) 

Now we define H* by 

H* = H(pa, ra- ' ,  Pa, Ra- ' ;  Ma ,  ma, 1). (A3.5) 

Equation (A3.4) suggests that the system defined by Eq. (A3.1), called 
below the H-system, has a definite relation to a system defined by Eq. ( A 3 . 9 ,  
called the H*-system. It should benoted that in the H* system the electron-ion 
interaction is not V ( r )  but p(ra-') .  Let us introduce the following trans- 
formation t 

t : ( p ,  r,  P,  R,  t ,  H )  + ( p * ,  r*,  P*, R*, t", H*)  

by p* = pa,  r* = ra-',  P* = Pa, R' = Ra- ' ,  t* = ta-' and H* = Ha. 

(A3.6) 

It is clear from the definition of t that it leaves the equations of motion 
invariant. 

In what follows, we consider the application of the transformation above 
the mass scaling of thermodynamic quantities. Though we consider here 
the coefficient of self-diffusion D, the same discussion can also be applied 
to other transport coefficients. According to the Kubo formula for D 

1 
D = lim w2 lim - S,(k, o) (A3.7) 

w - 0  k - 0  k 2  

where 

dt exp(iwt)F,(k, t), (A3.8) 

(..-)T being the canonical ensemble average in the H-system at tem- 
perature T. 

By means of the transformation (A3.6) we can easily show that 

F , ( k  = f,(k t; M ,  m, T )  

= ft(k*, t*; M* ,  m*, T*) 

where k* = ku. M*  = Ma.  m* = ma. and T* = Ta. 

(A3.10) 
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ISOTOPE EFFECTS IN LIQUID METALS 109 

According to Eq. (A3.5), the interaction between an electron with mass m* 
and ion with mass M* as well as ion-ion interaction in the H*-system does 
not depend on M*. The thermodynamics of the ion-component in the system 
can be treated, as usual, as a quasi one-component system without further 
explicit reference to the electron degrees of freedom and the effective ion-ion 
interaction of the one-component system may be assumed to be independent 
of M*.  By following the discussion of Brown and March34 we find 

f : (k* ,  t * ;  M*,  m*, T*) = f ,*(k*,  M * -  1’2t*; T*, m*). (A3.11) 

From Eqs (A3.7)--(A3.11): 

(A3.12) 

As for the ‘sound wave attenuation’ $11 + [, y and [ being shear and bulk 
viscosities respectively 

m M 2  1 

kBT w - r o  k - O k 4  
3 y + i = - - -  4 lim o4 lim - S(k, o) = @h*(T*, m*) (A3.13) 

It should be noted that unlike the classical mass scaling, temperature and 
electron-mass as well as ion mass are scaled in Eqs (A3.12) and (A3.13). 

Let us test these mass-scaling laws by comparison with experimental 
Since such data are clearly not available for the m* dependence of 

h: and h*, we had no alternative but to  assume this dependence can be 
neglected; this point requires further study in the future. From these equa- 
tions we find the following mass scaling equations for liquid lithium 

D 7 ( T )  = -/= D 6 k  T )  
M 7 a 6  

(A3.14) 

(A3.15) 

where 

a, = 1 + S(m/M,)k (A3.16) 

and we have assumed vl + $[ N y. 
The parameter u is mainly determined by the short-range part of the 

electron-ion interaction in the liquid. This part of the interaction in the 
liquid would not be ‘atom-like’ but molecular-like or of multi-centre 
character. The departure of the parameter k from unity means the net 
effect of the ion movement on the electron-ion interaction. According to the 
Born-Oppenheimer approximation, the effect of the nuclear movement in 
a system of nuclei and electrons to its Hamiltonian appears in terms of the 
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110 M. GINOZA AND N.  H. MARCH 

I I I 

180 220 260 300 
Temperature T ("C ) 

FIGURE A3.1 Temperature dependence of self-diffusion. Li6 and Li' solid lines are given 
by Eq. (3.1), while the dashed lines are ealculated on the basis of Eqs. (A3.15), (A3.17) and Li6 
solid line. A is for 5 = 0 and B for 5 = 10 and k = f. 

3.2 I , I I I I 

180 210 240 270 300  
Temperature T ("C ) 

FIGURE A3.2 Temperature dependence of viscosity. Filled circles are the experimental 
data by Ban, Randall and Montgomery (1962), while crosses and filled triangles re calculated 
on the basis of Eqs (A3.16), (A3.17) and the experimental data for Li6 and corresl md to 5 = 0 
and = 10 with k = f, respectively. 
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ISOTOPE EFFECTS IN LIQUID METALS 1 1 1  

power series expansion through (rn/M)li4. Therefore a reasonable choice 
of k in Eq. (A3.16) may be equal to a. 

Using this value plus Eqs. (A3.14) and (A3.15), we can obtain D 7 ( T )  and 
y7(T) for various values of ( from experimental data of D6(T) and q6(T).  
The results are shown in Figures A3.1 and A3.2. 

Though some departures of the kind required by experiment are displayed 
by the model, the departures remain too small to explain the experiments. 
Plainly, the model needs further refinement in the future. 

P.C.L.-c 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


